A Novel Triterpenoid Lactone, Schiprolactone A, from Schisan-dra propinqua (Wall.) Hook. f. et Thoms

CHEN, Ye-Gao*, a, b (陈业高) QIN, Guo-Weib (秦国伟) XIE, Yu-Yuan b (谢毓元)

Schiprolactone A, a triterpenoid lactone with a new side chain skeleton was isolated from the stems of *Schisandra propinqua* together with schisanlactones A and B. Their structures were elucidated by spectral studies.

Keywords Schisandra propinqua, schisandraceae, triterpenoid lactone

Introduction

Schisandra propinqua (Wall.) Hook. f. et Thoms (Schisandraceae) is a plant indigenous to Yunnan, China and used in folk medicine as a substitute of Wu-Wei-Zi (the seeds of Schisandra chinensis (Turcz.) Baill),

a famous traditional Chinese medicine for over 2000 years as tonic and sedative. ¹ It has been reported that a herbal medicine preparation in which the stems and roots of *S. propinqua* are a major component, was used for treatment of lung carcinoma in several hospitals in Yunnan, and that the water extract of the stems and roots of *S. propinqua* showed activity against Lewis lung cancer in animal test. ² Literature survey showed that only anwaweizonic acid and manwaweizic acid had been isolated from the plant. ³ A systematic study on the dried stems has resulted in the isolation of a minor novel triterpenoid lactone, schiprolactone A along with schisanlactones A and B. Their structures were clucidated by spectral studies as shown in Fig. 1.

Fig. 1 Structure of schiprolactone A (1), schisanlactones A (2), B (3) and C (4).

Results and discussion

EtOAc soluble fractions of the stems of S. propinqua were subjected to repeated column chromatography on silica gel, followed by preparative TLC to yield schiprolactone A (1), schisanlactones A (2) and B (3).

Schiprolactone A (1), a white amorphous powder,

^a Department of Chemistry, Yunnan Normal University, Kunming, Yunnan 650092, China

^b Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China

has the molecular formula $C_{32}H_{42}O_6$ determined by HRMS. The ¹H NMR (Table 1), ¹³C NMR (Table 2) and DEPT spectra revealed the presence of five methyls, eight methylenes, eight methines and nine quarternary carbons besides an acetyl group (δ 2.11, s, 3H; 169.7s, 21.6q), indicating that 1 was an acetylated triterpenoid. Carbon atom multiplicities were assigned by a DEPT experiment. The ¹³C NMR spectrum showed carbonyl carbons at δ 167.2s and 170.1s and oxygenated carbons at δ 80.4s and 84.9d, suggesting 1 possessed one tertiary and one secondary lactone rings. Since a series of 3, 4-sec-lanosten-3, 26-dioic acids and lactones have been discovered from plants of Schisandraceae, ⁴⁷ the two lactone rings of 1 might be in the same positions. The ¹H NMR and ¹³C NMR spectra

displayed three double bonds (δ 6.65, d, J = 12.3 Hz, 1H, H-1; δ 5.59, d, J = 12.3 Hz, 1H, H-2; δ 6.20, s, 1H, H-19 and δ 143.4d, C-1; 117.7d, C-2; 150.8s, C-8; 128.3s, C-9; 139.6s, C-10; 143.7d, C-19), which were almost the same as those in schisanlactones A (2) and C (4) previously isolated from the same genus. ^{6,7} Thus 1 appeared to possess the same 3, 4-sec-9, 19-cyclo-lanostene skeleton as that in 2 and 4, which was confirmed by correlations between H-1 and a carbonyl (δ 167.2s, C-3), two methyls (δ 1.51, 1.38, s, each 3H, CH₃-29, 30) and the oxygenated carbon (δ 80.4s, C-4), and H-5 (δ 2.50, m, 1H) and C-1, C-10 and C-19 in HMBC spectrum (Table 3), and no cyclopropane ring in ¹H NMR and ¹³C NMR spectra.

Table 1 1H NMR data of compounds 1-3 in CDCl₃

Н	1	2	3
1	6.65(d, 12.3 Hz)	6.65(d, 12.1 Hz)	6.12(d, 12.7 Hz)
2	5.79(d, 12.3 Hz)	5.79(d, 12.1 Hz)	5.93(d, 12.7 Hz)
· 5	2.48—2.51(m)	2.46-2.49(m)	2.39—2.41(m)
6	1.42-1.44(m), 1.66-1.70(m)		1.85-1.88(m), 0.79-0.82(m)
7	1.08—1.11(m), 2.09—2.11(m)		
11	1.93—1.96(m), 2.08—2.11(m) (overlap)		2.03-2.06(m)
12	1.59-1.62(m), 1.73-1.77(m)		
15	1.33-1.36(m), 1.99-2.01(m)		
16	1.60—1.64(m), 1.98—2.01(m) (overlap)		
17	1.54—1.56(m)		
18	0.74(3H, s)	0.75(3H, s)	0.96(3H, s)
19	6.20(s)	6.22(s)	1.21(d, 5.1 Hz), 1.02(d, 5.1 Hz)
20			2.03-2.07 (m) (overlap)
21	1.70 (3H, s)	1.02(3H, s)	0.95(3H, d, 6.1 Hz)
22	4.55(s)	4.47(dt, 13.1, 3.2 Hz)	4.45(dt, 13.1, 3.0 Hz)
23	2.93(t like)		2.38—2.42(m), 2.03—2.07(m) (overlap)
24	1.82-1.85(m), 2.11-2.13(m)	6.60(br d, 5.7 Hz)	6.59(br d, 6.5 Hz)
25	2.48—2.52(m) (overlap)		
27	1.82—1.86(m), 2.10—2.13(m) (overlap)	1.91(3H, s)	1.90(3H, s)
28	1.01(3H, s)	1.05(3H, s)	0.87(3H, s)
29	1.51(3H, s)	1.52(3H, s)	1.36(3H, s)
30	1.38(3H, s)	1.39(3H, s)	1.34(3H, s)
COCH ₃	2.11(3H, _B)		
24 25 27 28 29 30	1.82—1.85(m), 2.11—2.13(m) 2.48—2.52(m) (overlap) 1.82—1.86(m), 2.10—2.13(m) (overlap) 1.01(3H, s) 1.51(3H, s) 1.38(3H, s)	1.91(3H, s) 1.05(3H, s) 1.52(3H, s)	(overlap) 6.59(br d, 6.5 Hz) 1.90(3H, s) 0.87(3H, s) 1.36(3H, s)

Table 2 13C NMR data of compounds 1 and 2 in CDCl₃

Table 2		C TWITE data of compounds I and 2 in CDCi3			
C	1	2	C	1	2
1	143.4d	143.3d	17	48.5d	46.1d
2	117.7d	117.5d	18	17.4q	15.7q
3	167.2s	167.0s	19	143.7d	143.7d
4	80.4s	80.2s	20	82.3s	39.4d
5	49.1d	49.0d	21	25.4q	13.7q
6	33.8t	30.9t	22	84.9d	80.2d
7	27.9t	26.7t	23	45.0d	23.5t
8	150.8s	150.5s	24	32.4t	139.2d
9	128.3s	128.9s	25	48.0d	128.2s
10	139.6s	139.4s	26	170.1s	166.3s
11	26.6s	27.9t	27	32.4t	16.9q
12	30.2t	30.1t	28	27.2q	27.3q
13	44.9s	44.8s	29	26.2q	26.2q
14	51.6s	51.6s	30	29.3q	29.1q
15	31.1t	30.1t	CH ₃ CO-	169,7s	
16	27.6t	26.7t		21.6q	

Table 3 HMBC correlations of compound 1

Н	C	Н	С
1	3,5,19	22	23,24,26
2	3,10	23	20,21,22,25
18	12,13,17	28	8,13,14,15
19	1,5,8,11	29	4,5,30
21	20	30	4,5,29

The downfield shifts of the NMR signals of 1 for C-20 (δ 82.3s), C-21 (δ 25.4q) and H-21 (δ 1.70, s, 3H), compared with those of 4 (δ 75.4s, C-20; 21.2q, C-21; 1.32, s, 3H, H-21), revealed the presence of an acetyl group at C-20, which was further confirmed by correlation between H-21 and C-20 in HMBC spectrum. Another lactone ring was assigned to the side chain due to the presence of a mass spectral fragment at m/z 111 and the results of ${}^{1}H-{}^{1}H$ COSY and HMBC spectra. The saturated carbonyl carbon (δ 170.1s) and the deficiency of alkenyl proton and methyl group suggested that 1 had a side chain of saturated δ -lactone instead of the common α -methyl- α , β -unsaturated δ -lactone. The signal at δ 4.55 (s, 1H, H-22) became a singlet compared with that of 4 (δ 4.31, dd, J = 12.8, 3.7 Hz, 1H), suggesting only one hydrogen at C-23. Thus, a bond appeared to be formed between C-23 and C-27, while in 4 there was an alkenyl methyl group. HMBC spectrum of 1 confirmed this deduction by exhibiting couplings between H-23 (δ 2.93, t, 1H) and C-20 (δ 82.3s), C-22 (δ 84.9d) and C-25 (δ 48.0d), and between H-22 (δ 4.55, s, 1H) and C-26 (δ 170.1s), C-23 (δ 45.0d) and C-24 (C-27) (δ 32.6t).

The stereochemistry of 1 was determined by 2D NOESY spectrum. CH₃-18 showed cross peaks with CH₃-21, as well as H-29, indicating that CH₃-18 and CH₃-21 should be in syn- and β -positions. Thus, the acetyl group at C-20 should be in α -position. Cross peak between the acetyl group and H-22, showing that H-22 had α-configuration. Correlations between H-17 and CH₃-28 and H-22, H-5 and CH₃-30, indicated H-17 and H-5 also had α -configuration. As the bridge cyclic system is rigid, one 6-membered cycle can have the chair conformation, and the other chooses boat. On the above analysis, the structure of 1 was thus determined as shown in Fig. 1. It was a triterpenoid lactone with a new side chain skeleton. This kind of 4- and 6-membered bicycles have ever been found to exist in pinene derivatives.8

The structures of schisanlactones A (2) and B (3) were characerized by various spectral studies and comparison with the literature.⁵⁻⁷ Compounds 2 and 3 were first discovered in S. Propingua.

Experimental

General

IR spectra were recorded as KBr pellets on a Perkin-Elmer 599B spectrophotometer. MS were determined on a Varian Mat-711 mass spectrometer. NMR spectra were measured on a Bruker AM-400 spectrometer with TMS as internal standard and CDCl₃ as solvent. 2D-NMR spectra were performed on a DR × 500 spectrometer. CD was recorded with a Jasco J-500A spectropolarimeter. 200—300 mesh silica gel was used for CC and silica gel GF₂₅₄ for TLC.

Plant material

The stems of Schisandra propinqua (Wall.) Hook. f. et Thoms were collected from Yunnan province, China in April 1997 and identified by Mr. Bangtao Yue, a botanist of Tonghai Institute of Drugs Control in Yunnan, China, where a voucher specimen (No. 9703012) was deposited.

Extraction and isolation

The dried powdered stems of Schisandra propinqua (10 kg) were extracted exhaustively with 95% EtOH. The EtOH extract was evaporated in vacuum to yield a dark brown residue. H₂O was added to the residue, and the resulting solution was extracted with petroleum ether and EtOAc successively. The EtOAc extract was concentrated to give a brown mass, which was applied to a silica gel column, eluting with petroleum ether containing increasing amounts of Me₂CO. The fractions obtained from petroleum ether-acetone (10:1) elution were combined and subjected to repeated CC and preparative TLC to yield schiprolactone A (1, 6 mg), schisanlactone A (2, 15 mg) and schisanlactone B (3, 5 mg) respectively.

Schiprolactone A (1), white amorphous powder; EIMS m/z: $522[M^+](35)$, 504(48), 489(50), 464(58), 231(57), 197(32), 173(100), 155(26) and 111(7). HRMS m/z: 522.2978 (Calcd. 522.2981). ¹H NMR; see Table 1. ¹³C NMR; see Table 2.

Schisanlactone A (2), colorless needles. mp: 220—221 °C. ν_{max} (KBr): 1716, 1674, 1600, 1570, 1380 and 1371 cm⁻¹. EIMS m/z: 464[M⁺](10), 446 (60), 431(27), 391(10), 347(17), 252(18), 231 (23), 187(28), 173(74), 157(21), 145(48), 139 (10), 111 (33) and 95 (100). CD (MeOH; c 0.00875): $\Delta \epsilon_{235} + 7.07$, $\Delta \epsilon_{270} - 6.43$, $\Delta \epsilon_{325} + 6.27$.

¹H NMR; see Table 1. ¹³C NMR; see Table 2.

Schisanlactone B (3), white amorphous powder, $\nu_{\rm max}({\rm KBr})$: 1712, 1676, 1392 and 1385 cm⁻¹. EIMS m/z: 466[M⁺](12), 448(51), 423(85), 405(28), 367(67), 327(20), 283(24), 233(45), 215(52), 191(80), 139(23), 111(50) and 95(100). CD (MeOH; c 0.00530): $\Delta \varepsilon_{235}$ – 12.26, $\Delta \varepsilon_{265}$ + 12.12. ¹H NMR; see Table 1.

References

- Yunnan Provincinal Crude Drugs Company, Name Lists of Chinese Herbal Medicine Resources in Yunnan Scientific Press, Beijing, 1993, p. 151.
- 2 Xu, G. H.; Yang, Z.; Zhou, G. H.; He, T. H., Chin. Tradit. Herb. Drugs 1984, 15, 432.
- 3 Liu, J.S.; Huang, M.F.; Tao, Y. Can. J. Chem. 1988, 66, 414.
- 4 Sun, H.D.; Qiu, S.X.; Lin, L.Z.; Wang, Z.Y.; Lin, Z.W.; Pengsuparp, T.; Pezzuto, J.M.; Fong, H.H.S.; Cordell, G.A.; Farnsworth, N.R. J. Nat. Prod. 1996, 59, 525.
- 5 Liu, J.S.; Huang, M.F.; Ayer, W.A.; Bigam, G. Tetrahedron Lett. 1983, 24, 2355.
- 6 Liu, J. S.; Huang, M. F.; Arnold, G. F.; Aronald, E.; Clardy, J.; Ayer, W. A. Tetrahedron Lett. 1983, 24, 2351.
- 7 Liu, J.S.; Huang, M.F. Acta Chim. Sin. 1984, 42, 464.
- 8 Barrero, A. F.; Herrador, M. M.; Molina, J. M.; Quilez, J. F.; Quiros, M. J. Nat. Prod. 1994, 57, 873.

(E200008159 JIANG, X.H.; LING, J.)